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Abstract

This paper discusses loglinear models for assessing differential item functioning (DIF). Log linear

and logit models that have been suggested for studying DIF are reviewed, and loglinear formulations

of the logit models are given. A polynomial loglinear model for assessing DIF is introduced.

Two examples using the polynomial loglinear model for investigating DIF are discussed. One

example investigates DIP for a test consisting of both dichotomous and polytomous items. Another

example illustrates the use of DIP techniques in investigating whether common items are functioning

differently on two forms of a test in the common item nonequivalent groups equating design.
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There are many procedures a researcher may use to examine the validity of a test, so as
to prevent bias from inadvertently affecting a sub-group of people that the test is intended for.

Procedures of this type are part of the process of construct validation. One aspect of investing the
validity of a test for various groups of people is the investigation of whether bias exists at the item
level. Item bias is said to exist when an item is functioning differently for two or' more groups
of people, within the population the test is intended for. Item bias manifests itself by differential
response to an item based on the group a person belongs to, when conditioned on the latent variable
being measured by the test the item is a part of. The phrase differential item functioning (DIF) has
been used to refer to this type of differential item performance. Item bias is defined conditioned on
the latent variable measured by the test as there can be differences in responding to an item among
groups (termed impact) that reflect legitimate differences between the groups on the latent variable
measured by the test. When conditioned on the latent variable measured by the test there should be
no differences between the groups in responding to the item.

This paper discusses loglinear models used for assessing DIF. The loglinear models allow
investigation of DIF for dichotomously scored items (items scored correct or incorrect), or polyto-
mously scored items (items with more than two response categories). A definition of DIF is first
presented and is f 'lowed by a review of cont;ngency table approaches that have been used to investi-
gate DIE A polynomial loglinear model for assessing DIF which incorporates the a numerical score
given to item response categories and matching variable categories is presented. Two examples
using the polynomial loglinear model for investigating DIF are given. One example investigates
DIF for a test consisting of both dichotomous and polytomous items. Another example uses DIF
techniques in investigating whether common items are functioning differently on two forms of a
test in the common item nonequivalent groups equating design.

Definition of DIF
The data used to investigate DIF for a particular item consists of three variables: 1) an item

response variable (Y), 2) a group variable (V), and 3) a matching variable (Z). It is assumed in
this paper that the matching variable and item response are categorical rather than continuous (the
group variabl is also categorical). The data used to investigate DIF for a particular item are then
contained in an I x J x K table, where there are / categories for the for the item response, J
groups, and K categories for the matching variable.

There is no DIF for the item in question if Y and V are conditionally independent given Z.
Conditional independence of Y and V given Z can be expressed as

Pr(Y = y, V = v 1 = = Pr(Y = y I Z = z) Pr(V = v Z = z) , (1)

for all y, z, and v. Another way to express the conditional independence of Y and V given Z is

Pr(Y = y 1 = z, V = I)) = Pr(Y = y 1 = z) (2)

for all y, z, and v. The equivalence of Equations 1 and 2 is called the Fundamental Lemma of
Measurement Invariance by Meredith and Millsap (1992).

True DIF is defined with the matching variable being the latent variable measured by the test
the item is part of. In practice it is not possible to use this true matching variable. In this paper Z
is considered to be an observable variable, in which case the condition represented by Equation 2
is referred to as observed conditional invariance (Millsap and Everson, 1993).
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Let mu', be the expected count for item response category i, group j, and matching variable
category k. Conditional independence of Y and V given Z is equivalent to the conditional odds
ratios

1<i<I,1< j < J (3)
eij(k) mi+1,j,kmei+1,k

all being equal to 1 for every k. If any of the conditional odds ratios eii(k) differs from 1 then DIF
is said to exist. Uniform DIF is said to exist when some Oi;(k) differ from 1 and for each i and j,
Am) = Ov(kl) for all k k'. DIF that is not uniform is called nonuniform DIF.

Log linear and Legit Models for Studying DIF
The saturated loglinear model for the three-way table of item response category by group by

matching variable category is (Mellenbergh, 1982):

log(miik) Al +xi +xf +47 +Ay +xy
ilk (4)

One constraint is placed on each of the parameters xr, xf to identify the model (for example,

A. xf = 0). Constraints are also placed on the Ariv (I + J 1 constraints, for example

Aij
Y = AY = 0 for all i, j), Arkz (1 K 1 constraints, for example AArk = Ariz = 0 for all

k), and Ay (J + K 1 constraints, for example XV = A.riz = 0 for all j, k). There are
+ IK+JK 1 J K + 1 constraints placed in the AT, for example ArJ = A.TIV =

XfTz = 0 for all i, j, k. The model in Equation 2 has no residual degrees of freedom (the model
fits any data perfectly) because it is a saturated model.

The log of the conditional odds ratios in Equation 3 for the model in Equation 4 are

log
miikini+0+1,k Arv+Arv, YV XY V

ij

yVZ ..1.
N1YVZ

AYVZ 1YVZ
mi`s,k +1,j+1,k i+1,j,k "i,j+1,k (5)

The log-odds ratios given in Equation 5 will generally differ from zero and will not be constant
across levels of the matching variable category. Thus, the DIF implied by the model in Equation 5
is nonuniform DIF.

Mellenbergh (1982) identifies two nonsaturated models based on Equation 4 that are of interest
in the analysis of DIP one for uniform DIF and one for no DIF. The uniform DIF model is obtained
by eliminating the Xiir terms from the model of Equation 4:

log(muk) = p, Al + + Arz + , (6)

with the same constraints on the plrameters as were indicated for the model in Equation 4. The log
of the odds ratios in Equation 3 for the model in Equation 6 are

log = Ariv +Ary yv ry+,,;+. Ai+1./ 14+1
, A

Mi+1,J,knlij+1,k
(7)

The log-odds in Equation 6 will in general differ from 1 but do not differ across levels of the
matching variable. Thus, the model given by Equation 6 implies uniform DIF.
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The no DIF model presented by Mellenbergh (1982) is obtained by eliminating the AV terms
from the model in Equation 6:

log(Muk) = A + Ay + ,,,y + ,,,, + A, + Arkz (8)

The log of the odds ratios in Equation 3 for the model in Equation 8 will all be zero. Thus, the
model it. Equation 8 implies no DIP for the item.

To use the models in Equations 4, 6 and 8, Mellenbergh (1982) suggests that first the model
in Equation 6 be fit to the data. If this model does not fit the data (based on Pearson or likelihood
ratio chi-squared statistics) this implies nonuniform DIF for the item. If the model in Equation 6
does fit the data then the model in Equation 8 is fit to the data. If the difference in the likelihood
ratio chi-squared statistics for the models in Equations 8 and 6 is significant this implies the item
exhibits uniform DIF. If the difference in the chi-squared statistics for the models in Equations 8
and 6 is not significant then the item does not exhibit DIF.

Logit Models
Mellenbeigh (1982) notes that for dichotomous items logit models equivalent to the loglinear

models in Equations 4, 6 and 8 for the purposes of studying DIF can be used. In the logit models
the respons:: variable is log(miik/m2jk), where there are only two categories of item response.

In the case in which there are numeric scores associated with the matching variable categories
and/or item response categories this information can be used to createmore parsimonious logit (and
loglinear) models for studying DIF. Let the scores associated with the item response categories be
r1, r2, . . . , ri, and let the score associated with matching variable categories be s1, s2, ... , sK . It is
assumed the categories are arranged such that r1 < r2, ... , < rr and st < s2, ... , < sic.

In the case of a dichotomous item response Swaminathan and Rogers (1990) present logit mod-
els where linear functions of the matching variable score are substituted for the nominal matching
variable effects in the logit models presented by Mellenbergh (1982). This allows for a nonsatu-
rated logit model for nonuniform DIF (Mellenbergh's logit model for nonuniform DIF is a saturated
model). The model presented by Swaminathan and Rogers (1990) can be written as

(log 171111 = ao + X Y + aisk + azisk , (9)
M2jk

where there is one constraint put on the AJ (for example, At = 0), and one constraint is put on the
a2i (for example, a21 = 0). The logit model in Equation 9 is equivalent to the following loglinear
model (Agresti, 1990, pages 152-153)

log(miik) Ariv Arkz Ask + (10)

The same constraints are put on the parameters 4, Ay, 4, A.y, and XV as were put on the
corresponding parameters for the model in Equation 4. One constraint is placed on the fi (for
example, /31 = 0) and (I 1) (J 1) constraints are placed on the y,i (for example, ni = yil = 0
for all i, j). For the loglinear model in Equation 10, unlike the logit model in Equation 9, it is
possible that the number of item response categories could be greater than 2. The log of the odds
ratios in Equation 3 for the model in Equation 10 are given by

MijkMi+1,j+1,k YV YV YV YVlog = Aii + At+i,j+1 A1,1+1mi+t,j,kini,j+i,k

Yi+1,j+I Yi+1,j Yi,j+1)Sk (11)
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The log of the odds ratios in Equation 11 are linear functions of the matching variable score and
therefore represent nonuniform DIE.

Eliminating the yu terms from the model in Equation 10 gives

log(mijk) = µ + AY +Ay +xf + AT? + xikz +Ask.

The log of the odds ratios in Equation 3 for the model in Equation 12 are

, Ar÷vi.j+, Ar+v,log
mi+i,j.kmi,j+i,k

(12)

(13)

Equation 13 is in general different from zero but constant for all values of the matching variable
score. Consequently, the model in Equation 12 represents uniform DIE The logof the odds ratios
in Equations 13 and 7 are identical since the only difference between the models in Equations 12
and 6 are the interaction terms involving the item response and matching variable which cancel out
when computing the odds ratio.

Eliminating the Xiiv from the model in Equation 12 gives

log(mijk) = + xr + Arkz + Ask (14)

The log of the odds ratios in Equation 3 for the model in Equation 14 are all zero. Consequently,
the model in Equation 14 represents no DIE

Comparing the fits of the models in Equations 10 and 12 gives a test for nonuniform DIE, and
comparing the fits of the models in Equations 12 and 14 gives a test of uniform DIE

For the case in which there are two groups but more than two item response categories Miller
and Spray (1993) suggest using a logit model 1.1 ith group as the response variable. Their model can
be written as

(milklog = ao + aisk + a2r; + a3skri .
milk

The logit model in Equation 15 can be written as the following loglinear model

(15)

log(mijk) = + + xf + xy + misk + #21r1 yiskr, . (16)

The same constraints are put on the parameters AT, , Af, and A.Ticz as were put on the corresponding
parameters for the model in Equation 4. One constraint is put on each of the parameters /32j

and yj (for example, = ,R2I = Y1 = 0). The log of the odds ratios in Equation 3 for the model
in Equation 16 are

log ( mukrni+1,j+1,k
132,j+1 P2J + (Y)+1 Yj)Sk

Mi+1,j,krni,j+1,k
(17)

The log-odds ratios in Equation 17 will in general be different from zero and are a linear function of
the matching variable score. Consequently, nonuniform DIF is implied by the model in Equation
16.
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Eliminating the terms involving yi from the model in Equation 16 gives

log(muk) = A + AT +Ay +4 +AV + pusk+ 132iri

The log of the odds ratios in Equation 3 for the model in Equation 18 are

(18)

log
miikmr+14+1,k = hi (19)

The log-odds ratios in Equation 19 will in general differ from zero, but do not vary with the matching
variable score. Consequently, uniform DIF is implied by the model in Equation 18.

Eliminating the 182j from Equation 18 gives

log(muk) = /.4 + +Ay + Ai? + 01jSk (20)

The log of the odds ratios in Equation 3 for the model in Equation 20 will all be zero. Consequently,
no DIF is implied by Equation 20.

Comparing the fits of the models in Equations 16 and 18 gives a test for nonuniform DIF, a;,J
comparing the fits of the models in Equations 18 and 20 gives a test of uniform DER

An advantage of using the logit form of the models in Equations 9 and 15 as opposed to
the loglinear form of these models is that there are far fewer parameters to estimate in the logit
formulation. A possible advantage of using the loglinear formulation of the models as opposed to
the logit formulation is that the loglinear models can be generalized to deal with more than 2 item
response categories (J > 2) and more than 2 groups (K > 2) without complications of having to
deal with a polytomous dependent variable (Equation 9 cannot model more than two item response
categories, and Equation 15 cannot model more than two groups).

The next section presents a loglinear model in which the scores on the item responses and
matching variable are used in a way that results in far fewer model parameters than for the loglinear
forms of the logit models, or the loglinear models presented in Equations 4, 6 and 8.

A Polynomial Loglinear Model for Studying DIF
Loglinear models with polynomial terms involving test and item scores (polynomial loglinear

models) have been used in several measurement applications. For example, smoothing of test
score distributions (Holland and Thayer, 1987; Kolen, 1991), equating (Rosenbaum and Thayer,
1987; Hanson, 1991; Livingston, 1993; Little and Rubin, 1994), and testing for differences in
score distributions among groups (Hanson, 1992). This section presents a model for the three-way
table of item response, group, and matching variable used to investigate DIF that is analogous to
polynomial loglinear models previously used in the literature.

In the loglinear models in Equations 4, 6, and 8 the item response variable and matching
variable are treated as nominal. When there are scores associated with the item response categories
and the matching variable categories the following loglinear model can be used

di d2 d2

10g(Mijh) = + E pig;sf + f3vurp + E YghisfrP , (21)
8=1 h=1 11=1 h=1

where d1 < K, d2 < 1. As n Equation 4 a constraint is put on the X.y . There are no constrains
put on the fi parameters. A subset of the Yeti are assumed to be nonzero, and the rest are assumed
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to be zero. If it is assumed ye.h.j. 0 0 for particular values g*, h* and j* then it is also assumed
that yeeif 0 0 for all j' j'. Consequently, the number of yehj 0 0 is Jd3 for some positive
integer d3. The value of d3 is equal to the number of the di x d2 possible yogi in each group that
are specified to be nonzero. The value of d3 is not directly related to the values of di and d2, for
example, d3 is not the sum of d1 and d2. Note that the models in Equations 10 and 16 are not special
cases of the model in Equation 21.

The log of the conditional odds ratios in Equation 3 for the model in Equation 21 is

log
) 44/0

= lP2,h, j+1 132,hj)[rP+1 r!')
Mi+1,j,krni,j+1,k h=1

d1 d2

+EE(y,k+,- yok) frp+, -41.4. (22)
g=1 h=1

Equation 22 represents nonuniform DIE The DIF given in Equation 22 is constrained relative to the
DIF given by the saturated loglinear model (Equation 4). The model in Equation 21 is a nonsaturated
loglinear model that allows for nonuniform DIF. Comparing Equation 22 to Equations 11 and 17 it
is seen that the loglinear model in Equation 21 allows for more complicated forms of DIF than the
models in Equations 10 and 16. In particular, the model in Equation 21 allows DIF which varies
across adjacent item response categories.

The constrained version of the model given in Equation 21 which implies uniform DIF is

d2 d2

i0g(Mijk) =II+ + Dies: e82hjrih z..,EYghSfrih
g=1 h=1 g=1 h=1

(23)

The model in Equation 23 differs from the model in Equation 22 by not having the ygh parameters
differ for the different groups. The difference in the number of parameters between the models
in Equations 23 and 21 is d3(J 1). The log of the conditional odds ratios in Equation 3 for the
model in Equation 23 is

d2

log
miikmi+1,i+i,k

=E(132,h,j+1 132hj 1 tri4.1 41]
r h (24)

h=1

The constrained version of the model given in Equation 23 which implies no DIF is

d2 dd1 d2

log(miih ) = Ay E /344 /320-P + EE ygof rh , (25)
g=1 h=1 g=1 h=1

The model in Equation 25 differs from the model in Equation 23 by not having the #2.), parameters
differ for the different groups. The difference in the number of parameters for the models given
in Equations 25 and 23 is d2(J 1). The log of the odds ratios in Equation 3 for the model in
Equation 25 are all zero.

The likelihood ratio chi-squared statistics for the models in Equations 21 and 23 can be used to
test for nonuniform DIF. Under the hypothesis that the model in Equation 23 holds, the difference in

6
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the likelihood ratio chi-squared statistics between models 21 and 23 is asymptotically distributed as
a chi-square random variable with d3(J 1) degrees of freedom. For a level of significance p, the
hypothesis that the model in Equation 23 holds (uniform DIF) versus the alternative hypothesis that
the model in Equation 21 holds (nonuniform DIF) is rejected if the difference in the likelihood ratio
chi-square statistics of the models in Equations 21 and 21' is greater then the upper p percentage
point for the chi-square distribution with d3(J 1) degree; of freedom.

To test for uniform DIF the likelihood ratio chi - squared statistics for the models in Equations
23 and 25 can be used. Under the hypothesis that the modd in Equation 25 holds, the difference in
the likelihood ratio chi-squared statistics between modelf, 23 and 25 is asymptotically distributed
as a chi-square random variable with d2(J 1) degrees of freedom. For a level of significance p,
the hypothesis that the model in Equation 25 holds (no DIF) versus the alternative hypothesis that
the model in Equation 23 holds (uniform DIE) is rejected if the difference in the likelihood ratio
chi-square statistics of the models in Equations 23 and 25 is greater then the upper p percentage
point for the chi-square distribution with d2(J 1) degrees of freedom.

Choosing a Model
Using the models in Equations 21, 23 and 25 involves choosing values for d1 and d2, and

choosing which of the Yghj to make nonzero. The values of d1, d2, and which ythi to make nonzero
are chosen based on the model in Equation 21, and are used for the models in Equations 23 and 25
in testing for uniform and nonuniform DIE

A model selection procedure presented by Haberman (1974) can be used for choosing a model
in the form of Equation 21 from a set of possible models (different values of di, d2 and nonzero Yeti).
To apply Haberman's (1974) procedure it is assumed that a set of q models have been identified
(M1, M2, . , Mq) where model Al1_1 is nested within model M,, i = 2, , q (M1 is the simplest
model, and Mq is the most complex model). If G1 is the likelihood ratio chi-square statistic for model
Mi then for i = 2, ... q, G1 is the likelihood ratio statistic for testing the null hypothesis
Hi_i versus the alternative hypothesis H1, where Hi is the hypothesis that model M1 holds. If the
hypothesis Hi. is true then the statistics G1_1 GI for i = q, q -- 1, . . . , is +1 are asymptotically
independent and have chi-square distributions with to; degrees of freedom, where wi is equal to the
difference in the number of parameters of models Mi and Af1-1. For a level of significance p, with
ps = 1 (1 p)11(q -1), the probability that i = q, q 1, . . . , is +1 exceeds C, the upper
ps percentage point for the chi-square distribution with wi degrees of freedom is asymptotically no
greater than p. A simultaneous test of the hypothesis H;, i = q 1, q 2, ... , 1, is to reject all
hypotheses Hi such that i < i', where is the largest i s ich that G1_1 > C. With a specified
value of p, this hypothesis testing procedure would allow one to eliminate from consideration
models Ai; , i < i'. It gives no guidance for choosing from among the models M1, i > i', although
typically model Mi, (the simplest model) is chosen. Smaller values of p would would make it
harder to re; -..zt the null hypothesis of the simpler model and therefore favor the selection of simpler
models.

The selection procedure of Haberman (1974) requires that the models being considered form
a nested sequence. Especially in the case of non-dichotomous items it is possible that the set of
models under consideration do not form a nested sequence. In that case the Haberman model
selection procedure is not directly applicable. A series of model comparisons could be performed,
but the tests would no longer be independent and the error rate given by the Haberman procedure
will no longer be accurate. The first example presented in the next section providesan example of
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using a modification of the Haberman procedure to select a model for polytomous items.

In applied settings it may not be realistic to use a model selection procedure for each item.
A more realistic procedure may be to select a common model for all items with a specific number
of score categories, perhaps based on past experience. This procedure is used in the second of the
following examples.

Examples

Two examples of applying the polynomial loglinear model are presented in this section. First,
the polynomial loglinear model is applied to the 27 item data set analyzed in Miller and Spray (1993).
The results from the polynomial loglinear model are compared to results using the logit model of
Miller and Spray (1993). The second example consists of applying the polynomial loglinear model
to investigate DIF for common items in a common-item nonequivalent groups equating design.
The goal is to examine if any of the common items function differently on the two test dates (the
common items are embedded within different test forms on the two test dates).

Matching Variable

For both examples the matching variable will be a test score consisting of the sum of the item
scores. The issue discussed in this section is whether to use as the matching variable the sum of the
item scores including the studied item, or the sum of the item scores excluding the studied item.

Several authors have used theoretical justifications to conclude that a matching variable that
is the sum of item scores should include the studied item (Holland and Thayer, :988; Zwick, 1990;
Meredith and Millsap, 1992). If there is a latent variable under which local independence holds
for the item scores then a test score which excludes the studied item score will be conditionally
independent of the studied item score given the latent variable. Under this condition and some
other, fairly mild conditions, Meredith and Millsap (1992) show that DIP will appear when the
test score excluding the studied item score is used as a matching variable even if there is no DIF
in either the studied item score or the test score when the latent variable is used as the matching
variable. Under these conditions even though there is no DIF when using the latent variable as
the matching variable, DIF will be observed when the test score excluding the studied item score
is used as the matching variable. It is only under very special conditions that using the test score
including the studied item score will alleviate this problem (e.g., the Rasch model holds f the item
responses, Holland and Thayer, 1988). Consequently, theoretical analysis suggests the problem of
DIF being detected when using an observed matching variable when no DIF exists using the ideal
latent matching variable will occur in many practical situations whether or not the test score used
for the observed matching variable includes or excludes the studied item score.

In the cases considered in this paper the item category scores for all items are 0, 1, , I 1,

where there I item response categories. Let mijk be the expected count corresponding to item
response category i, group j, and matching variable category k, where the matching variable is
the total test score excluding the score for the studied item. Let nr;k be the expected counts in the
three-way table where the matching variable is the total test score including the score for the studied
item. If there are I item response categories, J groups, and K score categories for the test score
excluding the studied item, then the table containing the expected counts muk has I x J x K cells
and the table containing the expected counts nt7k has I x J x (K + 1 1) cells. TI e expected
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counts milk can be written in terms of the expected conts maik as

« i<k<K+1-1
M ijk 10 k < i,k > K+i 1.

For example, consider group 1 and item response category 2. Assuming item response categories
are ordered by the category scores, then item response category 2 corresponds to an item score of
1. From Equation 26, nqik = M2,1,k -.1 for 2 < k < K + 1. This is because any examinee who
obtained a score of 1 on the item would have a test score including the item that was one greater than
their test score excluding the item. For k = 1, Equation 26 gives mitt = 0 since if an examinee
obtained a score of 1 on the item, the test score including this item could not be zero. In addition,
for k > K + 1 Equation 26 gives milk = 0. This is because if an examinee obtained a score of I
on the item, their maximum test score including the item corresponds to matching variable score
category K + 1 (one mute than the maximum test score excluding the item).

Equation 26 shows that the expected counts in the table corresponding to the test score including
the studied item can be written in terms of the expected counts in the table corresponding to test score
excluding the studied item. Even though there are 1 1(1 1) more cells in the table corresponding
to the test score including the studied item that table will have I J (I 1) cells with structural
zeros. Including the studied item score in the test score creates a table with more cells but no more
information. A loglinear model fit to the table corresponding to the test score excluding the studied
item would give the same results as a loglinear model fit to the table corresponding to the test score
including the studied item as long as the structural zeros in the table were taken into account when
fitting the model. Different results would be obtained if the model fit to the table corresponding to
the test score including the studied item allowed all the cells in the table to have non-zero expected
counts (which would result in non-zero fitted counts for cells in which the fitted count by definition
should be zero).

Consequently, in the present setting the estimated counts and model fits would be the same
whether the studied item is included in the test score or not (as long as structural zeros are preserved
when including the item score in the test score). The matching variable used in the examples is the
t -,st score excluding the item score.

Example 1
The first example uses the same data used for the example in Miller and Spray (1993). The data

consists of responses of 1976 examinees to a 27 item experimental mathematics performance test.
The test consisted of 12 multiple-choice items (items 1 through 12), 9 gridded-response items (items
13 through 21), and 6 open-ended items (items 22 through 27). The multiple- choice and gridded-
response items were scored dichotomously (one for a correct response and zero for an incorrect
response). The scores on the open-ended items were 0, 1, 2, , k, where k = 3, 3, 4, 4, 5, 6 for
items 22 through 27, respectively. IMF was investigated for males versus females. There were
1005 male and 971 female examinees in the data set. One male examinee included in the data
analyzed by Miller and Spray (1993) was dropped from the analyses reported here because all of
his responses to the polytomous items were missing.

The first step in fitting the loglinear models given in Equations 21, 23, and 25 is determining
the number of parameters to use in the models (the values of d1, d2, and d3). A modified version
of the Haberman procedure described above is used to select values of d1, d2 and d3. Models are
considered with values of d1 ranging from 1 to 6, values of d2 ranging from I to the maximum score

(26)
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on the item (1 1), and d3 ranging from 1 to 5. The five interaction parameters considered were
Y12, Y21, },13, and yet. A model with e.t, =1 would include only the first 1 of these interaction

parameters. For example, if d3 = 1 then the only interaction parameter in the model would be y11.
If d3 = 3, then the three interaction parameters in the model would be Y11, ;12, and Y21.

For the dichotomously scored items (items 1 through 21) the only possible value of d2 is i,
and d3 was set equal 1. Consequently, for these items choosing a model involves choosing a value
of d1. For the dichotomous items the Haberman procedure was applied for the sequence of models
corresponding to d1 = 1, 2, ... , 6. The overall level of significance was chosen to be .01, so the
value of p* used for each individual test of the nested models was 1 (1 .01)115 =002

For the polytomous items (items 22 through 27) values must be chosen ford, , d2 and d3 rather
than for just d1. Instead than specifying one sequence of nested models, a sequence of nested
models was specified separately for d1, d2, and d3. The Haberman model selection procedure was
applied three times once for d3, once for d2,and once for d1. An error rate of 003 was chosen
for each of the three separate Haberm. n procedures resulting in in an overall error rate of at most
.009 (by the Bonferroni inequality) for the three procedures taken as a whole. When selecting d3,
d1 and d2 were set equal to their maximum values (6 for cl;, and / 1 for d2). The Haberman
procedure was applied to a sequence of models given by d3 = 1, 2, ... , 5. The overall level of
significance chosen was .003, so the value of p* used for each individual test of the nested models
was 1 (1 .003)1/4 = .00075.

When selecting d2, d1 was set equal to 6 and d3 was set equal to the value determined in the first
step. The Haberman procedure was applied to a sequence of models given by d2 = 1, 2, ... , / 1.

For an overall level of significance of .003, the value of p* used for each of the individual tests of
the nested models was 1 (1 .003)1/(1-2).

When selecting d1, the values of d2 and d3 were set equal to the values chosen in the previous
steps. The Haberman procedure was applied to a sequence of models given by d1 = 1, 2, ... , 6.
For an overall level of significance of .003, the value of p* used for each of the individual tests of
the nested models was 1 (1 .003)1/5 = .0006.

Examples of applying the model selection procedure to items 7 and 23 are presented in Table
1. The top part of Table 1 gi.,es results for item 7. A nested sequence of six models were compared.
Chi-square statistics for comparing adjacent models and their degrees of freedom and p-values are
-resented in the last three columns. The first two models to be compared are those given in the first
two rows. For both these models d2 = 1 and d3 = 1. The model in the first row has d1 = 6 and
the model in the second row has d1 = 5. The chi-square statistic for testing the null hypothesis
of the model with d1 = 5 against the alternative hypothesis of the model with d1 = 6 is given as
.544. The value of p* chosen for each of the tests of consecutive models is .002. Consequently, for
the first test (d1 = 5 versus d1 = 6) the null hypothesis of the simpler model is not rejected. The
first test that is significant at the .002 level is the test for d1 = 2 versus d1 = 3. Consequently, the
model selected is d1 = 3 (this is indicated in the table by the value of I)* being next to the model
with (/' = 3).

For item 23 separate selection procedures were used for d3, d2, and d1. For item 23 the first
five lines correspond to models with five different values of d3. For these models di and d2 were
fixed at their maximum values of 6 and 3, respectively. The level of significance chosen for the
tests of consecutive models was .00075. The first model comparison was for d3 = 4 versus d3 = 5.
The chi-square statistic for this test is 21.34 with 2 degrees of freedom which is significant at the
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.00075 level. Consequently, the simpler model with d3 = 4 is rejected, and the value of d3 = 5
is chosen. Next, three models corresponding to three values of d2 are compared (with d1 = 6 and
d3 = 5). In this case a value of d3 = 3 is selected. Finally, there are six models corresponding to
d1 = 6, 5, , 1 (with d2 = 3 and d3 = 5). A value of di = 4 is chosen. Thus, for item 23 the
model with d1 = 4, d2 = 3, and d3 = 5 is used to test for uniform and nonuniform DIF.

For all dichotomous items, except items 7 and 13, d1 was selected to equal 4, while for
dichotomous items 7 and 13 d3 was selected to be 3. The models chosen for the polytomous items
are given in Table 2. For all the polytomous items, d1 = 4 and d2 = / 1 (the maximum score
on the item). Varying numbers of interactions terms were chosen for the polytomous items. For
example, for polytomous item 24 only one interaction parameter between item response and score
level was chosen. For polytomous item 27, four interaction parameters were chosen.

The values of d1, d2, and d3 chosen were used in fitting the models in Equations 21, 23, and
25 for each item. Likelihood ratio chi-square statistics for testing for uniform and nonuniform DIF
were computed. When reporting results, three levels of significance are used 0.05, 0.01 and 0.05
/ 27 = 0.00185 (a Bonferroni adjustment).

Significance levels for tests of uniform and nonuniform DIF are shown in Table 3 for all items.
For uniform DIF, thirteen items reached the .05 level of significance , ten items reached the .01
level of significance, and eight items reached the .00185 level of significance. For non-uniform
DIF, two items shows significant nonuniform DIF at the .05 level, and one of these items (item 15)
did not show significant uniform DIF. For Item 15 nonuniform DIF was indicated, but the bias was
balanced to cancel the effects against each group out and this item exhibited no uniform DIF.

The logistic discriminant function analysis (LDFA) results using the models in Equations 16,
18 and 20 are presented in Table 4. The results in Table 4 differ slightly from the results in Table
4 of Miller and Spray (1993) because the analysis reported here used a matching variable that did
not include the studied item, whereas Miller and Spray (1993) used a matching variable that did
include the studied item.

There is little difference between the LDFA and polynomial loglinear models in terms of
the tests for uniform DIF. For the polynomial loglinear model the test for nonuniform DIF was
significant at the .05 level of significance for only items 15 and 26. For the LDFA model the test
for nonuniform DIF was significant for ten items at the .05 level of significance, for five items at
the .01 level of significance , and for two items at the .00185 level of significance. For this data the
LDFA model indicated more nonuniform DIF than the polynomial loglinear model.

The log of the odds ratios in Equation 3 for the observed counts and fitted counts for the
polynomial loglinear and LDFA nonuniform DIF models were graphed and compared to explore
the DIF trends across score levels. Graphs were created for dichotomous items in which significant
nonuniform DIF was indicated for the LDFA model but not for the polynomial log-linear model.

The graph of the log-odds as a function of test score (excluding the studied item) is presented
in Figure 1 for item 16. In all figures group 0 is males and group 1 is females.

As can be seen from the graph in Figure 1, the observed log-odds lie primarily above the line
of no DIF. The line of no DIF is a horizontal line perpendicular to the y-axis (or log-odds ratio axis)
at 0.0. If an item had no DIF, the observed data would approximate this line. The observed data
shows scatter, but it does not appear to have any trend. As can also be seen from the graph, the
fitted log-odds ratios for the LDFA model have more slope than the fitted log-odds ratios for the
polynomial loglinear model. The polynomial loglinear model has very little slope, and significant



nonuniform DIF was not indicated for this model. For this item the polynomial loglinear model
appears to fit the observed data more closely than the LDFA model.

Log-odds plots for items 4, 5, 6, 8, and 20 are presented in Figures 2 through 6, respectively.
Like item 16, significant nonuniform DIF was indicated by the LDFA model for these items, but
not by the polynomial loglinear model. For all items except item 8 there does not appear to be
much of a trend in the log-odds ratios, which is more consistent with the fitted odds-ratios for the
polynomial loglinear model. For item 8 there may be some slight trend in the observed log-odds
ratios, which is more consistent with the fitted odds-ratios for the LDFA model.

There was only one item, item 15, for which the test for nonuniform DM was significant for
the polynomial loglinear model but not for the LDFA model. For one other item, item 7, the test
for nonuniform DIF was very near to being significant for the loglinear polynomial model but not
for the LDFA model. Graphs of the odds ratios for items 15 and 7 are given in Figures 7 and 8.

The results in Figures 7 and 8 are similar. The fitted log-odds ratios for the polynomial loglinear
model show a positive slope. There is only a very slight trend in the fitted log-odds ratios for the
LDFA model, and this trend is in the opposite direction of the trend in the fitted log-odds ratios for
the polynomial loglinear model. To the extent there is any trend in the observed log-odds ratios, that
trend appears to be in the same direction as the trend of the fitted log-odds ratios for the polynomial
loglinear model.

The test for nonuniform DIF was significant for the last 5 polytomous items using the LDFA
model, whereas only for item 26 was the test for nonuniform DIF significant for the polynomial
loglinear model. For the polytomous items there would be multiple log-odds ratio plots (one plot
for each pair of adjacent item response categories) for each item analogous to the single plots for
the dichotomous items given in Figures 1 through 8. Because of the sparseness of the data it is not
practical to plot the the multiple observed log-odds as a function of matching variable score level
for the polytomous items.

Another way to graphically display the results for the polytomous item (that can also be used
for the dichotomous items) is to plot the means of the conditional distributions of item response
given matching variable score. Figure 9 gives a plot of the observed conditional item score means
and fitted conditional item score means using the polynomial loglinear model of uniform DIF for
item 23. The scores on item 23 range from 0 to 3. The lines in Figure 9 give the mean item score
as a function of matching variable score. The conditional means are presented separately for males
and females. If there were no DIF the conditional means for males and females would be identical.
Figure 10 gives the observed and fitted conditional means using the polynomial loglinear model
of nonuniform DIF for item 23. The observed conditional means for females are generally below
those for males in the middle of the ni.,ching score range. The model for uniform DIF (Figure 9)
appears to fit the data well. This is consistent with the results in Table 3 which indicated significant
uniform DIP, but not significant nonuniform DIF for item 23.

Observed and fitted conditional means using the polynomial loglinear model for uniform DIP
are presented in Figure 11 for item 26. The plot of observed and fitted conditir .gal means using
the polynomial loglinear model for nonuniform DIF is presented in Figure 12. The model for
nonuniform DIF appears to provide a better fit to the data than the model of uniform DIF. This is
consistent with the results in Table 3 which indicated significant nonuniform DIF. For matching
variable scores above around 19 the means for males are higher than the means for females, whereas
for matching variable scores below 19 the opposite is the case. The difference in means between
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males and females is larger for scores above 19.

Example 2
The second example consists of applying the polynomial log-linear model to investigate DIF

for common items in a common-item nonequivalent groups equating design. In the common-item
nonequivalent groups equating design the forms of a test to be equated are administered to different
groups along with a common set of items. The common items may be included in the score
reported to the examinee (an internal set of common items) or not included in the score reported to
the examinee (an external set of con-,_ in items).

For the common item equating to provide valid results it is important that the common items
function the same in both test forms. A common item could function differently on two forms
due to the different contexts in which it was embedded, or the different times it was administered
(the topic of the item might be more salient at one time versus another). One definition of the
items functioning the same for both forms is that there is no association between item response and
form on which the item was administered when conditioned on the score for all common items.
DIF analysis can be used to assess whether this association exists or not. Instead of the focal and
reference groups being majority and minority or male and female as is (typical in DIF studies), the
groups here are the two forms in which the common item set is embedded and the two test dates on
which these two forms were administered.

The data used were from a 150 item professional certification test. The focus was on the 1993
form (administered in 1993). The 1993 form had a link to the 1992 form (administered in 1992
with 37 internal common items to the 1993 form) and the 1991 form (administered in 1991 with 38
internal common items to the 1993 form). There were 1521 examinees who took the 1991 form,
1450 examinees who took the 1992 form, and 1375 examinees who took the 1993 form.

For the 1993/1991 data, di was set equal to four for each studied item after roughly examining
how many parameters would be needed to model each item. For each item the likelihood ratio
chi-square for testing the nonuniform model versus the saturated model (goodness of fit test) was
not significant at the .05 level of significance.

Three different significance levels were used for the analysis 0.05, 0.01, and 0.05 / 38 =
0.0013158 (a Bonferroni adjustment). For uniform DIF, a total of thirteen items were found to be
significant at the .05 level and beyond, ten were significant at the .01 level and beyond, and five
were significant at the 0.0013 level of significance. The results for all items are presented in Table
5.

For non-uniform DIP, only two items were significant at the 0.01 level. Both items that
exhibited non-uniform DIF also exhibited uniform DIF at the 0.0013 level of significance.

All items that showed significant DIF at the 0.01 level of significance were examined by
looking at the actual content of the items (the item stems) and their responses (alternatives). Two
of the items for which uniform DIF was indicated at the 0.0013 level of significance had syntactic
differences between the two forms. For one of the items, "... NOT..." (all capital letters) was used
in the stem while for that item on the other form "...not..." (underlined lower case) was used. For
the other item, the word "vs." in the stem was written with a period at the end of the abbreviation
on one form, and on the other form it was just written as "vs" without a period at the end. No
other noticeable syntactic differences were found for the other items which had significance levels
less 0.01. There should be no syntactic differences in an item between forms (every common item
should be absolutely identical between forms). These differences were missed by test development
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staff who checked for the items being identical on the two form.
Items that are functioning differently on the two test forms may have an adverse effect on the

equating. To study the effect of the inclusion of the two items with syntactic differences on equating
the equating analysis was re-done excluding those two common items. Before proceeding, it was
necessary to determine if these two syntactically incorrect items need to stay in the bommon -item
pool for the sake of content specifications. The common-item pool should be a mini-version of the
test, and must be balanced in its range of content as similarly as possible to the entire set of items
used to compute the score reported to examinees. In this particular test all items fell into one of
four content areas. Two of the content areas had large numbers of items; the other two content areas
had small numbers of items. The items which exhibited the large amount of uniform DIF, and had
syntactic problems, came from content areas in which they could be removed, and no harm would
be done to the balance of content in the common-item set.

The equating was re-done excluding these two items as common items. In the recomputed
equating the two items are considered non-common items. Tucker and Levine Observed Score
equating functions were computed (Kolen and Brennan, 1987). As an indication of the difference
in the equatings the number of examinees whose scale scores would change if the two items were
not used as common items was calculated (the scale scores range from 0 to 150). For the Tucker
equating 23 out of the 1375 examinees who took the new form would have a score change of 1
point (either increase or decrease), and for the Levine equating scores for 310 examinees would
have changed by one point. Given that the maximum score change is one point on a 151 point scale
and the number of examinees with a one point change is not large, it is concluded that not including
these two items as common items does not have an important effect on the equating results.

For the 1993/1992 data, d1 was also set equal to four for each studied item. For each item the
likelihood ratio chi-square for testing the nonuniform model versus the saturated model (goodness
of fit test) was not significant at the .05 level of significance.

Again, three different significance levels were used for the analysis 0.05, 0.01, and 0.05
/ 37 = 0.0013514 (a Bonferroni adjustment). For uniform DIF, a total of eight items were found
to be significant at the 0.05 level and beyond, four were significant at the 0.01 level and beyond,
and none were significant at the 0.0014 level of significance. For non-uniform DIF, only two items
were significant at the 0.01 level. Neither of these items exhibited significant nonuniform DIF. The
results for the 1993/1992 equating are presented in Table 6.

As in the 1993/1991 equating study, all items that showed significant DIF at the .01 level of
significance (and beyond) were examined by looking at the actual content of the items (the item
stems) and their responses (alternatives). None of the items manifested any apparent reasons why
they should perform differently in the two different forms.

The results indicated more DIF for the 1993/1991 equating items than for the 1993/1992
equating items. A plausible ad-hoc explanation is that since some of the items had somewhat political
and time related content, there would be less bias when the time interval between administrations
was smaller as any effect of time related content would be reduced.

Discussion
The focus of the investigation of DIF is the conditional association between item response and

group given a matching variable. This association can be modeled by loglinear models, or logit
models using either the item response or group as the dependent variable.

Loglinear and logit models for studying DIF were preselted and loglinear formulations of the
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logit models were given. A polynomial loglinear model using scores on the matching variable and
item responses was introduced. This model contains far fewer parameters than loglinear models that
treat the matching variable and item response as nominal. Unlike the logit models, the polynomial
loglinear model is generalized to the case of more than two item responses and more than two
groups. An advantage of the polynomial loglinear model is that it provides a non-saturated model
of nonuniform DIF that is able to detect more complex forms of DIF than logit models that have
been suggested (Equation 22 versus Equations 11 and 17), although it is possible that the logit
models could be expanded to model more complex forms of DIP.

An example of using the polynomial loglinear model to study DIF was given using data from
Miller and Spray (1993). The results of the polynomial loglinear model were compared to the LDFA
method given by Miller and Spray (1993). The methods were fairly consistent in their identification
of uniform DIF. The LDFA model indicated more nonuniform DIF in the items than the polynomial
loglinear model. Examination of graphs of the conditional log-odds ratios for item where the LDFA
and loglinear models gave dffferent indications of nonuniform DIP indicated that the polynomial
log-linear model appeared to fit better than the LDFA model for most items, although the LDFA
model did appear to fit better for one of the items.

The results presented for the polynomial loglinear and LDFA models cannot be used to conclude
which model is best for the data used, or even if either model is providing accurate results, since
the amount of DIF in the items is unknown. The purpose here was to provide an example of the
application of the polynomial loglinear model and a comparison of the results to those obtained
from the LDFA model. Simulation could be used to study the the absolute and relative performance
of the methods.

A second example involved using the polynomial loglinear model to study DIF in common
equating items. In this application of DIF techniques items are studied for differential functioning
across different forms in which they are embedded and different test dates on which those forms
are given. In common item equating it is important that the common items function the same in
the forms being equated, and DIF techniques offer a useful set of tools for studying this question.
In the example presented, two items for which the test for uniform DIP was significant were found
to have syntactic differences between the forms that were undetected by visual examination of the
forms by test development staff.

It would be useful to develop confidence bands as in Miller and Spray (1993) for use in
graphical displays such as those displayed in the figures. The usefulness of confidence bands is
demonstrated in Miller and Spay (1993) where they are used to identify regions of the matching
variable for which DIF is present. Confidence bands and significance tests both have the property
that smaller amounts of DIF can be detected as significant with larger samples sizes. This can be a
problem when the DIF detected as statistically significant is not practically important.
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Table 2

Polynomial Log linear Models Used For Miller/Spray Open-Ended Items Dataset

item dl

Number of Parameters

d2 d3

22 4 3 4

23 4 3 5

24 4 4 1

25 4 4 2

26 4 4 1

27 4 6 4

23

19



Table 3

Polynomial Log linear Model for the Miller/Spray dtitaset

Uniform DIF Non-Uniform DIF

d.f. chi-square P d.f. chi-s glare P

Multiple-
Choice

1 1 10.769 0.00103 *** 1 0.022 0.88316
2 1 28.181 0.00000 *** 1 1.777 0.18251
3 1 0.120 0.72931 1 0.268 0.60437
4 1 5.917 0.01499 ' 1 1.467 0.22588
5 1 31.676 0.00000 "* 1 0.687 0.40735
6 1 0.763 0.38239 1 0.676 0.41106
7 1 11.277 0.00078 *** 1 3.839 0.05007
8 1 44.426 0.00000 *** 1 1.223 0.26879
9 1 26.096 0.00000 "* 1 0.207 0.64883
10 1 1.265 0.26073 1 0.262 0.e0852
11 1 0.179 0.67220 1 0.016 0.89998
12 1 17.280 0.00003 *** 1 0.039 0.84399

Gridded
13 1 0.025 0.87368 1 0.001 0.97814
14 1 0.030 0.86241 1 1.212 0.27094
15 1 1.278 0.25820 1 6.260 0.01235
16 1 8.061 0.00452 ** 1 0.155 0.69348
17 1 3.824 0.05053 1 1.359 0.24364
18 1 0.018 0.89427 1 2.423 0.11958
19 1 3.256 0.07114 1 1.008 0.31529
20 1 6.558 0.01044 * 1 0.478 0.48936
21 'i 0.145 0.70332 1 0.625 0.42913

Open-Ended
22 3 1.772 0.62106 4 7.298 0.12097
23 3 18.229 0.00039 *** 5 6.947 0.22463
24 4 5.555 0.23491 1 2.208 0.13732
25 4 6.208 0.18412 2 0.830 0.66045
26 4 15.057 0.00458 ** 1 6.098 0.01354 *
27 6 13.382 0.03735 * 4 7.318 0.12002

* <= .05, ** <= .01, *** <= (.05 / 27)
Note-- all dichtomous items were fit with di = 4, except for items 7 and 13 where di = 3



Table 4

Logistic Discriminant Function Analysis for Miller/SprayDataset

Uniform DIF Non-Uniform DIF

d.f. Chi-square p < d.f. Chi-sqlare p <

Multiple-
Choice

1 1 9.598 0.00195 1 1.389 0.23857

2 1 24.595 0.00000 ** 1 1.155 0.28240

3 1 0.059 0.80843 1 2.562 0.10948

4 1 5.322 0.02106 1 8.151 0.00430 **

5 1 31.648 0.00000 *** 1 3.924 0.04760 *

6 1 0.825 0.36387 1 4.437 0.03517 *

7 1 13.314 0.00026 1 0.216 0.64189

8 1 43.711 0.00000 ** 1 8.276 0.00402 **

9 1 27.397 0.00000 *** 1 1.289 0.25616

10 1 1.122 0.28955 1 1.246 0.26428

11 1 0.143 0.70578 1 0.112 0.73795

12 1 19.614 0.00001 *** 1 0.256 0.61315

Gridded
13 1 0.094 0.75918 1 3.141 0.07634

14 1 0.009 0.92439 1 1.193 0.27479

15 1 1.202 0.27299 1 0.008 0.92743

16 1 6.471 0.01097 1 4.694 0.03028

17 1 3.809 0.05098 1 0.332 0.56465

18 1 0.012 0.91453 1 0.032 0.85901

19 1 5.216 0.02238 1 0.003 0.95462

20 1 3.489 0.06177 1 4.626 0.03150

21 1 0.076 0.78290 1 0.126 0.72258

Open-Ended
22 1 1.683 0.19457 1 0.174 0.67647

23 1 17.086 0.00004 ** 1 3.662 0.05566

24 1 3.449 0.06329 1 8.189 0.00421 *
25 1 1.468 0.22572 1 5.956 0.01467

26 1 6.813 0.00905 * 1 14.169 0.00017 **

27 1 5.214 0.02241 1 12.318 0.00045 "4'

<= .05, " <= .01, *** <= (.05 / 27)

o4 1)
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Table 5

Polynomial Log linear Model for the Equating 1993/1991 Dataset

item

Uniform DIF Non-Uniform DIF

d.f. chi-square p < d.f. chi-square P <

1 1 0.351 0.55333 1 0.902 0.34212

2 1 2.340 0.12610 1 0.003 0.95570
3 1 3.725 0.05360 1 1.267 0.26031

4 1 1.005 0.31609 1 0.200 0.65494

5 1 7.656 0.00566 " 1 0.046 0.83047

6 1 15.761 0.00007 1 0.062 0.80312

7 1 5.965 0.01460 1 0.000 0.99691

8 1 0.881 0.34798 1 2.239 0.13456

9 1 0.646 0.42140 1 0.927 0.33572

10 1 3.019 0.08228 1 1.454 0.22787
11 1 0.145 0.70345 1 0.231 0.63048
12 1 9.378 0.00220 " 1 2.930 0.08697
13 1 0.059 0.80771 1 1.005 0.31601

14 1 15.918 0.00007 1 0.053 0.81859

15 1 5.355 0.02067 1 3.426 0.06417
16 1 3.534 0.06010 1 1.342 0.24663
17 1 1.634 0.20116 1 1.003 0.31648
18 1 5.064 0.02443 1 1.126 0.28857
19 1 0.620 0.43117 1 0.031 0.86057
20 1 0.176 0.67469 1 0.208 0.64831

21 1 0.219 0.63999 1 0.114 0.73533
22 1 9.056 0.00262 " 1 1.060 0.30321
23 1 0.000 0.98877 1 0.380 0.53749
24 1 2.610 0.10616 1 2.513 0.11291
25 1 7.707 0.00550 " 1 1.465 0.22613
26 1 7.672 0.00561 1 0.292 0.58902
27 1 1.890 0.18918 1 1.196 0.27403
28 1 1.265 0.26070 1 0.007 0.93382
29 1 95.091 0.00000 * 1 8.596 0.00337 "
30 1 24.799 0.00000 1 7.184 0.00735 "
31 1 3.255 0.07122 1 0.972 0.32408
32 1 0.291 0.58980 1 0.219 0.63959
33 1 15.929 0.00007 1 0.549 0.45880
34 1 2.788 0.09497 1 1.178 0.27771
35 1 0.784 0.37600 1 1.695 0.19298
36 1 0.002 0.96228 1 0.013 0.91011
37 1 1.613 0.20402 1 2.020 0.15525
38 1 1.493 0.22175 1 0.200 0.65452

<= .05, " <= .01, <= (.05 / 38)

n
22 4 6
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Table 6

Polynomial Log linear Model for the Equating 1993/1992 LAtaset

item

Uniform DIF Non-Uniform DIF

d.f. Chi-square

WI=

d.f. Chi -square p < p <

1 1 5.209 0.02248 * 1 0.664 0.41532

2 1 7.616 0.00578 ** 1 2.941 0.08634

3 1 1.198 0.27376 1 0.012 0.91144

4 1 1.801 0.17962 1 2.738 0.09798

5 1 0 280 0.59663 1 0.172 0.67793

6 1 0.237 0.62672 1 0.007 0.93153

7 1 0.349 0.55443 1 0.908 0.34053

8 1 0.828 0.36274 1 0.108 0.74214

9 1 9.076 0.00259 ** 1 3.238 0.07196

10 1 0.410 0.52216 1 0.565 0.45223

11 1 2.688 0.10114 1 0.000 0.99542

12 1 0.181 0.67060 1 0.688 0.40675

13 1 0.097 0.75553 1 0.578 0.44710

14 1 3.161 0.07543 1 1.346 0.24600
15 1 0.452 0.50118 1 3.973 0.04623 *
16 1 0.341 0.55918 1 0.635 0.42564
17 1 6.886 0.00869 ** 1 1.602 0.20563
18 1 3.904 0.04816 1 3.015 0.08251

19 1 1.476 0.22433 1 0.111 0.73919

20 1 0.605 0.43657 1 0.807 0.36892
21 1 1.680 0.19494 1 0.110 0.74022
22 1 0.738 0.39025 1 1.284 0.25708
23 1 0.971 0.32445 1 1.460 0.22689
24 1 0.231 0.63087 1 1.466 0.22594
25 1 0.954 0.32868 1 0.269 0.60374

26 1 5.595 0.01801 * 1 0.463 0.49606
27 1 0.450 0.50239 1 3.515 0.06081

28 1 2.887 0.10119 1 4.696 0.03023
29 1 6.081 0.01367 * 1 0.028 0.86797
30 1 6.794 0.00915 ** 1 0.250 0.61731

:11 1 0.229 0.83260 1 1.012 0.31444
32 1 0.C17 0.89563 1 0.358 0.54954
33 1 1.099 0.29447 1 0.013 0.90782
34 1 1.753 0.18544 1 0.003 0.95455
35 1 3.164 0.07528 1 0.148 0.70059
36 1 3.821 0.05705 1 0.211 0.64597
37 1 0.224 0.63598 1 0.767 0.38105

<= .05, ** <= .01, *** <= (.05 / 37)
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